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We propose a mathematical structure, based on a noncommutative geometry,
which combines essential aspects of general relativity with those of quantum
mechanics, and leads to correct ª limiting casesº of both these physical theories.
The noncommutative geometry of the fundamental level is nonlocal with no
space and no time in the usual sense, which emerge only in the transition process
to the commutative case. It is shown that because of the original nonlocality,
quantum gravitational observables should be looked for among correlations of
distant phenomena rather than among local effects. We compute the
Einstein±Podolsky ±Rosen effect; it can be regarded as a remnant or a ª shadowº
of the noncommutative regime of the fundamental level. A toy model is computed
predicting the value of the ª cosmological constantº (in the quantum sector) which
vanishes when going to the standard spacetime physics.

INTRODUCTION

There are many theoretical indications that at the fundamental level,
i.e., below the Planck scale, the manifold structure of spacetime breaks down

[there are so many hints scattered in the literature that it is difficult to give

a list of references; for a review see Demaret et al. (1997)] and that, in

particular, time loses its ordinary meaning (e.g., Connes and Rovelli, 1994;

Rovelli, 1990, 1991). The problem is that when we give up the manifold

structure so many possibilities are open, none of them being more natural
than others, that we are left only with our subjective preferences. It seems

that the situation has changed with the discovery of noncommutative geometry

(Connes, 1994, and references therein). One could claim that the noncommu-
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tative generalization of the usual geometry is ª naturalº in the following sense.

As is well known, the manifold structure can be defined in terms of the

algebra of smooth functions C ` (M ) on a set M (this definition is equivalent
to the more standard one in terms of charts and atlases). The algebra C ` (M )

is of course commutative, and to drop the commutativity assumption seems

to be a natural step to undertake. Therefore, we take any (associative) algebra

and try to see what does happen if we proceed, as closely as possible, along

the lines established in the usual differential geometry. It turns out that the

change is radical, but, surprisingly, many standard methods can be adapted
to the new conceptual context. In this way, many spaces usually regarded as

highly pathological (e.g., non-Hausdorff , nonmeasurable) can effectively be

investigated with the help of noncommutative methods. Since general algebras

are often too difficult to deal with one looks for their suitable representation,

and for the algebras in question the standard representation is provided by

the algebra of operators in a Hilbert space. And here the chain of our motiva-
tions closes up. The idea of noncommutativity appeared first in physics as

the noncommutativity of quantum mechanical observables represented by

operators in a Hilbert space.

Another attractive thing, from our point of view, about noncommutative

spaces is their ª global character.º In a differentiable manifold M the existence
of points is equivalent to the existence of smooth functions which vanish at

these points; algebraically such functions form maximal ideals in the algebra

C ` (M ) of all smooth functions on M. In noncommutative algebras, in general,

there are no maximal ideals, and the concept of point is replaced by that of

pure state, which is also familiar from quantum mechanics. In spite of this,

a true dynamics can be done on noncommutative spaces, for instance, in
terms of derivations of a given noncommutative algebra. It is then evident

that when one uses such spaces to model physical processes at the fundamental

level the usual idea of spacetime is replaced by something drastically different,

but still workable. By restricting the noncommutative algebra to its center

we naturally go to the commutative case. In this way, we can recover the

standard spacetime geometry.
The above attractive features of noncommutative geometries, andÐ last

but not leastÐ tangible successes in putting into the noncommutative frame-

work the standard model of fundamental interactions (Connes and Lott,

1990), have motivated several attempts at creating a conceptual basis for the

noncommutative quantum theory of gravity (e.g., Chamseddine et al., 1993;

Sitarz, 1994; Hajac, 1996; Connes, 1996; Chamseddine and Connes, 1996a,
b; Madore and Mourad, 1996). All these attempts explicitly or tacitly assume

that it is the geometry of spacetime which should be made noncommutative

[for a review see Madore (1997)]. In Heller et al. (1997) we proposed a

scheme for a noncommutative quantization of gravity the main strategy



Noncommutative Unification of GR and QM 1621

of which consists in starting, from the very beginning, with an abstract

noncommutative space and obtaining from it the usual spacetime geometry

via the correspondence with the classical case. To describe our idea, let us
mention that there is a standard method of obtaining a noncommutative

space from a given commutative one (Connes, 1994, pp. 99±102). Roughly

speaking, a given commutative space, for instance, a manifold, should be

represented as the quotient of a groupoid G by an equivalence relation (which

can be given as the action of a group on G), and then one should apply the

standard method of constructing a C*-algebra ! on G. This C*-algebra is,
in general, noncommutative and can serve as a basis for our noncommutative

geometry. In the case of spacetime M, one should notice that M can be given

as the quotient M 5 E/SO(3,1), where E is the total space of the fiber bundle

of frames over M. The point is that, by taking the Cartesian product E 3
SO(3, 1), we obtain a groupoid, the so-called groupoid of transformations,
and the above method can be directly applied. This is described in Section
1. There is one important proviso: We start, right from the beginning, with

the groupoid G 5 E 3 G , where E is a suitable space and G a suitable group,

forgetting about spacetime M, our aim being to obtain spacetime when going

from our noncommutative geometry to the commutative case.

If we assume that E is a smooth manifold and G a Lie group, then the
noncommutative space corresponding to the C*-algebra ! is strongly Morita

equivalent to the smooth manifold M 5 E/ G . Since in noncommutative

geometry, strong Morita equivalence plays the role of isomorphism [for

definition see Madore (1995), p. 140, or Masson (1996), p. 40], it would

seem that we have gained nothing with our construction. But this is not so.

Strong Morita equivalence, being a ª noncommutative isomorphism,º does
not know about points and their neighborhoods, and consequently the non-

commutative space based on the algebra ! is equivalent to a smooth manifold

ª modulo local properties,º and can be used in physics to model nonlocal

processes at the fundamental level.

Our generalization can go even further if we give up the assumption

that E is a smooth manifold. For instance, we could think of E as the total
space of a generalized fiber bundle over a spacetime with singularities

such that the fibers over ª singular pointsº need not be diffeomorphic to

the typical fiber. Even such fibers are admitted which are reduced to the

single point. Heller and Sasin (1996) showed that also in such cases the

groupoid G is quite a regular space, and our construction can proceed

essentially with no changes. However, as a result we obtain a noncommuta-
tive space which is no longer strongly Morita equivalent to a manifold,

but rather to a space which can be interpreted as spacetime with singularities

(Heller et al., 1997). Although this case seems to be more mathematically

interesting and more promising from the point of view of physics, in the
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present paper we shall be concerned with the case where all commutative

spaces involved are assumed to be smooth manifolds. Our motivation for

doing so is that in the present paper we want to introduce our approach

to unifying quantum mechanics with gravity as simply as possible, and

going beyond the manifold category would provoke many questions which

at the introductory stage would make things more complicated rather than

smoothing them out.

Our approach resembles unification theories of the Kaluza±Klein type

[for a noncommutative version of such a theory see Madore (1995), p.

180] with the equivalence classes of the groupoid fibers (see below Section

5) playing the role of ª internal spacesº in Kaluza±Klein theories. It can

be regarded as describing some finite-dimensional system with internal

degrees of freedom responsible for quantum gravity effects. Let us notice,

however, that the system in question could be a ª gravitating particleº (as

when we consider the Einstein±Podolsky ±Rosen experiment in Section 8),

or a cosmological model in a quantum gravity regime (if we ª liftº a

cosmological solution from spacetime M to the groupoid G; see end of

Section 3). This largely depends on the choice of the group G . For this

reason we prefer to speak of our approach as a step toward a unification

of general relativity with quantum mechanics, although by a slight abuse

of language we shall also occasionally speak about quantization of gravity.

The organization of our material is the following. In Section 1, we

construct the Hilbert space for our model. Section 2 summarizes those

aspects of noncommutative geometry which are necessary to formulate (in

Section 3) a noncommutative version of general relativity. Its quantization

scheme is presented in Section 4, and the transitions to the usual spacetime

geometry, on one hand and to the standard quantum mechanics on the other

hand are discussed in Section 5. In Section 6, we check the consistency

of our scheme by computing a simple model in which the groupoid G is

a Cartesian product of the total space of the frame bundle over a 3-

dimensional Minkowski spacetime by the finite group D4. In Section 7,

we demonstrate that, in our scheme observable quantum gravitational phe-

nomena should be looked for among correlations between distant measure-

ments rather than among ª local phenomena,º and in Section 8 we show

that the Einstein±Podolsky ±Rosen experiment finds its natural explanation

in our approach. It can be regarded as a remnant or shadow of the ª totally

nonlocalº noncommutative regime. Section 9 summarizes the main advan-

tages of our model and stresses some of its weaker points. Some overlaps

with the material presented in (Heller et al., 1997) are indispensable not

only to make the present paper self-consistent, but also because our aim

is to discuss more carefully physical aspects of our approach than was
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possible in Heller et al. (1997), in which the mathematical foundations

were the primary objective.

1. GROUPOID OF FUNDAMENTAL SYMMETRIES

In this section we construct the Hilbert space for our model. We start

from the direct product G 5 E 3 G where E is an n-dimensional smooth

manifold and G a Lie group acting on E (to the right). Elements of G are

ª fundamental symmetriesº of our scheme. Heuristically, we could think
of E as the total space of the fiber bundle of frames over spacetime M,

and of G as its structural group (a connected component of the Lorentz

group). However, we insist upon starting just from a manifold E and a

group G of ª fundamental symmetries,º our aim being to deduce spacetime

M from our model via the correspondence with macroscopic physics. In

the present paper we leave the group G unspecified. The correct choice of
G is left for the future development of the proposed model, and it should

be made on physical grounds. Moreover, it can turn out that our scheme

is too narrow to incorporate all required physics; in such a case the scheme

could be enlarged by substituting for G a supergroup or a quantum group

(and suitably modifying the model; preliminary analysis shows that it
is possible).

Our next step will be to regard G as a groupoid. Roughly speaking,

groupoid differs from group by the fact that not all its elements can be

composed with each other (composition can be done only within certain

subsets of the groupoid). For the precise definition of groupoid see, for

instance, Renault (1980); here we give a less formal description of G as
a groupoid.

Of course, G is a set of pairs g 5 ( p, q) where q 5 pg, p, q P E, g P
G [one can also write g 5 ( p, g), g P G ]. We can think of such a pair as

an arrow starting at p and ending at q. This arrow can be interpreted as a

fundamental symmetry operation (the name ª fundamental symmetryº can be

attributed, by only a slight abuse of language, to both elements of G and
elements of G). For G to be a groupoid a subset G(0) of it should be distin-

guished, namely the subset of all elements of G of the from ( p, e), p P E,

where e is the neutral element of G , and there must exist a composition law

such that elements g 1 and g 2 of G, viewed as arrows, can be composed with

each other, g 5 g 1 + g 2, if the end of g 2 coincides with the beginning of g 1. To

formally express properties of the composition one introduces two following
mappings: the source mapping s: G ® G(0) defined by s( p, q) 5 p, and the

range mapping r: G ® G(0) defined by r( p, q) 5 q. Then one defines G(2) : 5
{( g 1, g 2) P G 3 G: s( g 1) 5 r( g 2)}, and some natural conditions are postulated,

for instance, s( g 1 + g 2) 5 s( g 2) and r( g 1 + g 2) 5 r( g 1) for every g 1, g 2 P
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G(2). These conditions can be easily read from the diagram presenting the

composition g 5 g 1 + g 2 in the form of arrows (Connes, 1994, pp. 99±100).

We should also notice that each g P G has the two-sided inverse g 2 1 such

that g g 2 1 5 r( g ) and g 2 1 g 5 s( g ) (for brevity we omit the composition

symbol + ). G has the natural structure of a fibered space with the fibers Gp 5
{ p} 3 G , p P E.

The groupoid G with the above structure is also called the semi-direct

product of E and G , and denoted by G 5 E b G . The groupoid G is said to

be smooth if G and G(0) carry differentiable structures such that the mappings

s and r are submersions, and the composition mapping + : G(2) ® G and the

natural inclusion mapping i : G(0) ® G are smooth. In our case, G is evidently

a smooth groupoid.

Now, our strategy is the following. First, we shall try to construct, based

on G, a noncommutative differential geometry. To this end we define the

algebra ! 5 C `
c (G, C ) of smooth, compactly supported, complex-valued

functions on G with the convolution

(a * b)( g ) : 5 # Gp

a( g 1)b( g 2)

as multiplication, where a, b P !, and g 5 g 1 g 2; g , g 1, g 2 P Gp; p P E. If

G is a non-Abelian group, the convolution is noncommutative, giving rise to

a noncommutative geometry (which we shall construct in the next section).

The above integral is taken with respect to the (left) invariant Haar measure.

! is also an involutive algebra with involution defined as a*( g ) 5 a( g 2 1).

Second, based on the geometry determined by the algebra !, we shall first

define a generalized Einstein’ s equation (in the operator form), and then, on

each fiber Gq , define square-integrable functions equipped with the suitable

Hilbert space structure. The direct sum * 5 % q P E L2(Gq) will serve as a

state space of our quantum mechanics. The modulus squared ) c ) 2 of the

ª wave functionº c P L2(Gq) is the probability density of the ª fundamental

symmetryº g P Gq to occur.

The crucial point is to make the noncommutative geometry based on

the algebra ! 5 C `
c (G, C ) and the Hilbert space * 5 % q P E L2(Gq) to

collaborate with each other. This will be achieved in the following way. After

solving the generalized Einstein equation, we complete the algebra ! to a

C*-algebra, and then we find a representation of this algebra in the Hilbert

space *. Now, we can develop the quantization scheme by following either

the standard formalism of bounded operators on a Hilbert space or the C*-

algebra approach. We shall describe all stages of the above scheme in the

following sections.
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2. NONCOMMUTATIVE GEOMETRY OF THE GROUPOID

2.1. Differential Algebra

As was demonstrated by Koszul (1960) and later extensively used by

others, the differential geometry on a manifold M can be done in terms of

the algebra C ` (M ) of smooth functions on M and the C ` (M )-modules of

smooth sections of smooth vector bundles over M. The main idea of generaliz-

ing the standard differential geometry is to replace the commutative algebra

C ` (M ) by any, not necessarily commutative, associative algebra. In this way,
one obtains a vast generalization of the traditional geometry but, unfortunate ly,

the generalization is not unique: at several crucial points one can proceed

in various directions, thus obtaining different versions of noncommutative

differential geometry [for a penetrating discussion, see Dubois-Violette

(1995)]. Happily enough, if we choose the derivation-based version of differ-

ential geometry on the smooth groupoid G 5 E 3 G , the generalization is
practically unique. The structure of G turns out to be simple enough to

exclude unnecessary complications and at the same time rich enough to

guarantee interesting results. The derivation-based calculus has been devel-

oped in many works (e.g., Dubois-Violette, 1988, 1995; Dubois-Violette et
al., 1989a, b, 1990; Dubois-Violette and Michor, 1994; Sasin and Heller
1995). In the rest of this section we follow the last of these references.

Derivation of the algebra ! is defined to be a linear transformation

(endomorphism) v: ! ® ! satisfying the Leibniz rule

v(ab) 5 v(a)b 1 bv(a)

a, b P !. The set of all derivations of ! is denoted by Der!. It is a Lie
algebra with respect to the bracket operation [u, v] 5 uv 2 vu, u, v P Der!.

In the case of the algebra C ` (M ), Der(C ` (M )) is a C ` (M )-module, and it

corresponds to all vector fields on M. In the case of a noncommutative algebra

!, Der! is not, in general, an !-module, but only a ](!)-module, where

](!) denotes the center of ! (i.e., the set of all elements of ! which

commute with all elements of !). Although Der! can be thought of as a
noncommutative counterpart of vectors fields, it should be remembered that

in the framework of noncommutative geometry, ª vector fieldsº are in general

global objects and consequently they cannot be said to consist of vectors.

The pair (!, V ), where V is a ](!)-submodule of Der!, is called

differential algebra. In our case ! 5 C `
c (G, C ), and as V we choose those

derivations of ! which are naturally adapted to the structure of G 5 E 3
G (as a direct product), i.e., all those v P Der! which can be represented

in the form v 5 vE 1 v G , where vE is the ª componentº of v parallel to E,

and v G the ª componentº of v parallel to G . More formally, v P V is said to

be parallel to E if, for any a P C ` ( G ), v( a + pr G ) 5 0, where pr G is the



1626 Heller and Sasin

obvious projection. The set of all derivations of ! parallel to E is denoted

by VE. Derivations parallel to G , denoted by V G , are defined analogously.

Therefore,

V 5 VE % V G

2.2. Metric Structure

To proceed further, we must introduce a metric, i.e., a ](!)-bilinear

nondegenerate symmetric mapping g: V 3 V ® !. We chose the metric in

the form

g 5 pr*E gE 1 pr*G g G (1)

where gE and g G are metrics on E and G , respectively. The above choice of

both V and g is the simplest and the most natural one (it is naturally adapted
to the product structure of G 5 E 3 G ).

In general, to define a metric in a noncommutative case is a delicate

matter. It turns out that, in sharp contrast to the standard geometry, in a broad

case of noncommutative differential calculi there exists an essentially unique

metric structure. It has been shown by Madore and Mourad (1996) (see also
Madore, 1997) that for any derivation-based noncommutative differential

calculus, such that all derivations are internal, there exists a unique metric

(modulo a nonsingular matrix). In such a case, the metric coefficients must

lie in the center of a given algebra, and in the commutative limit they cannot

be functions of coordinates. ª In the commutative case (. . .), each differential

calculus determines a Stehbein [a global field of moving frames] and thereby
a metric. In the commutative limit all of the noncommutative differential

calculi are either singular (. . .), or have a common limit. The moving frame

however and the associated metric remain as a shadow of the noncommutative

structureº (Madore and Mourad, 1996, p. 433). This is of course the conse-

quence of the nonlocal character of noncommutative geometry.

Let us notice that the G part pr*G g G of metric (1) is the pullback of the
(Riemann) metric g G on the group G and, in agreement with Madore and

Mourad (1996), it is essentially unique. However, the E part pr*E gE of metric

(1) is in fact determined by the Lorentz metric on the spacetime M (since

gE 5 p *MgM, where p M: E ® M is the canonical projection), and consequently

there are as many metrics pr*E gE as there are Lorentz metrics on M. These

facts are important as far as our construction of ª noncommutative general
relativityº is concerned (see Section 3).

Notice that the differential geometry can be done in terms of the algebra

! even if the metric pr*E is weakly degenerate, i.e., if it satisfies the follow-

ing condition:
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" v P VE: ( " u P VE: gÄ (u, v) 5 0)

Þ ( " a P ( p M + prE)*(C ` (M )): v(a) 5 0)

It can be shown that if gE 5 p Mg, where g is a (Lorentz) metric on M, then

pr*E gE is weakly degenerate. Indeed, the condition

" Y P x (M ): (( " X P x (M ): g(X, Y ) 5 0) Þ (Y 5 0))

is equivalent to

" YÅ P VE : (( " XÅ P VE : pr*E gE (XÅ , YÅ ) 5 0)

Þ " a P ( p M + prE)*((C ` (M )): YÅ (a) 5 0)

where XÅ P VE is the canonical lift of X P -(M ), and similarly for YÅ P VE.

The remark that each v P VE is of this form ends the proof.

2.3. Connection and Curvature

Now let us define the mapping F g: V ® V*, where V*, the dual of V,

is the set of ](!)-homomorph isms from V to !, by

F g(u)(v) 5 g(u, v)

u, v P V. The mappings F g and F 2 1
g play roles analogous to those of lowering

and raising indices in the standard tensorial calculus. The set V + such that
F 2 1

g (V +) 5 V is the set of ª invertible forms.º In our case, all forms are

invertible, i.e., V + 5 V*.

Now we define the preconnection ¹ *: V 3 V ® V* with the help of

the usual Koszul formula

( ¹ *u v)(x) 5
1

2
[u(g(v, x)) 1 v(g(u, x)) 2 x(g(u, v))

1 g(x, [u, v]) 1 g(v, [x, u]) 2 g(u, [v, x])]

for u, v, x P V, and the linear connection ¹ : V 3 V ® V by

¹ uv 5 F 2 1
g ( ¹ *u v)

The curvature of this connection is the operator R: V 3 ® V defined by

R(u, x)y 5 ¹ u ¹ x y 2 ¹ x ¹ u y 2 ¹ [u,x] y

If V is a free ](!)-module, we can choose a basis in it and for any

linear operator T: V ® V define the trace of T in the usual way, trT 5
( k

i 5 1 T i
i. Let us notice that VE is always a free module. Whether V G is a free

module depends on the group G . If V 5 VE % V G is not a free module, we
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can proceed as in Sasin and Heller (1995) (for the case where G is a finite

group see Section 6). In the following, we shall, for simplicity, assume that

V is a free ](!)-module. In such a case, for any fixed pair x, y P V, we
define the family of operators Rxy: V ® V by

Rxy(u) 5 R(u, x)y

The Ricci curvature is ric(x, y) 5 trRxy . Finally, by putting ric(x, y) 5 g(R(x),

y) we obtain the Ricci operator R: V ® V [R is the adjoint operator of the

](!)-bilinear form ric: V 3 V ® ](!)]. Now we have at our disposal all

the necessary tools to define a noncommutative version of Einstein’ s equation.

3. NONCOMMUTATIVE GENERAL RELATIVITY

Let us define the generalized Einstein equation in the operator form

R 2
1

2 a
rI 1 L I 5 k T (2)

where a 5 trI, r 5 trR, L and k are constants related to the cosmological
constant and Einstein’ s gravitational constant, respectively, and T is a suitably

generalized energy-momentum operator. Since it could be expected that at

the fundamental level there is only ª pure noncommutative geometryº we

assume that T 5 0, but for the sake of generality we keep L in the equation

(if necessary we can always put L 5 0). Therefore, the generalized Einstein

equation assumes the form

G 5 0 (3)

where G : 5 R 1 2 L I. It can be easily seen that the set kerG : 5 {v P V:

G(v) 5 0} is a ](!)-submodule of V. The differential algebra (!, kerG),

where ! 5 C `
c (G, C ), can be regarded as a solution of the generalized

Einstein equation (strictly speaking only kerG is determined by this equation).

Because of the form of metric (1) the generalized Einstein equation can

be written as

GE 1 G G 5 0

where GE is the part parallel to E, and G G is the part parallel to G . Since in

the G direction there is essentially one metric (see Section 2.2), the equation

G G 5 0 should be solved for derivations, i.e., we should look for v P
kerG G , V G

On the other hand, since the equation GE 5 0 is essentially a ª liftingº

of the standard Einstein equation in the spacetime M, all derivations v P VE

satisfy it (all derivations v P V G satisfy it trivially), i.e., G(v) 5 0 for every

v P VE. Therefore, we can write
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pr*E gE (G(V ), u) 5 ric(u, v) 5 0

for every u, v P VE. This equation is equivalent to the Einstein equation in

spacetime M, and it should be solved for pr*E gE.

To solve equation (3) [or equation (2)] is a difficult task, but we can

use the above ª lifting propertyº to show that it has many solutions. Indeed,
every ª liftedº solution of the usual Einstein equation solves the generalized

Einstein equation. Let C ` (M ) and C `
c (G, C ) be the algebras corresponding

to the original solution and to the ª liftedº solution, respectively. These alge-

bras are strongly Morita equivalent. This means that from the point of view

of noncommutative geometry they contain the same information [let us notice,

however, that C `
c (G, C) ignores local properties of C ` (M )]. Of course, not

all solutions of the generalized Einstein equation are generated in this way.

4. QUANTIZATION OF NONCOMMUTATIVE GENERAL
RELATIVITY

In the present section we shall consider the differential algebra (!,

kerG). Recall that ! is an involutive algebra with the involution defined as

a*( g ) 5 ( g 2 1), a P !, g P G, and the convolution (a * b)( g ) 5
* Gp a( g 1)b( g 2) as multiplication. Now, our aim is to extend ! to a C*-algebra

and quantize it with the help of the standard algebraic method (e.g., Thir-

ring, 1979).

By applying the theorem proved by Connes (1979) to our case, we learn

that the involutive algebra ! 5 C `
c (G, C ), for each q P G(0), has the represen-

tation p q in a Hilbert space * 5 L2(Gq)

p q: ! ® @(*)

where @(*) denotes the algebra of bounded operators on *, given by

( p q(a) c )( g ) 5 # Gq

a( g 1) c ( g 2 1
1 g ) (4)

g 5 g 1 + g 2, g , g 1, g 2 P Gq , c P L2(Gq), a P !, and that the completion

of ! with respect to the norm

|a| 5 supq P G0| p q(a)|

is a C*-algebra. We shall denote it by % and call it an Einstein C*-algebra.

Now we can formulate postulates of our noncommutative theory of

quantum gravity.

Postulate 1. A quantum gravitational system is represented by an Einstein

C*-algebra %, and its observables by Hermitian elements of % (the set of all

Hermitian elements of % will be denoted by %H).



1630 Heller and Sasin

We speak of ª observablesº in the quantum gravity regime by analogy

with the standard quantum mechanics. Whether these ª observablesº leave

traces in the macroscopic world remains to be seen (we come back to this
question in Section 7). By the same analogy, we can say that the spectrum

of a Hermitian element of % represents possible measurement results of

this observable.

Postulate 2. Let 6 denote the set of all states of the algebra %; elements

of 6 represent states of the system, and pure states of % represent pure states

of the system.

Postulate 3. If a P %H and f P 6, then f (a) is the expectation value

of the observable a when the system is in the state f .

Recall that states of % are defined to be positive linear functionals f
on % such that | f | 5 1. Convex combinations of states are states. A state

which cannot be expressed as a convex combination of other states is said

to be a pure state.

Whereas the above three postulates are in close analogy with the standard
C*-algebraic approach to quantum mechanics, the following fourth postulate

is a new ingredient of our scheme.

Postulate 4. The dynamical equation of the system, described by %, is

i " p q(v(a)) 5 [ p q(a), F ] (5)

for every q P G(0). We postulate that here v P kerG, and in this way the

generalized Einstein equation (3) is coupled to the quantum dynamical equa-

tion (5). F is a an operator, F: * ® *, which in the transition to the

commutative case should reproduce the Hamilton operator (see Section 5).
Together with the group G , the operator F is a ª free entryº of our quantization

scheme. It should be specified on physical grounds. To solve equation (5)

means to find a P % such that, for every v P kerG, p q(v(a)) gives the same

result as 2 (i/ " )[ p q(a), F ] when acting on c P L2(Gq).

Equation (5) is a noncommutative counterpart of the SchroÈ dinger equa-

tion in the Heisenberg picture of the usual quantum mechanics,

i " 1 d

dt
AÃ(t) 2 5 [AÃ(t), H ]

where H is the Hamilton operator. In this picture, state vectors are independent

of time and all time dependence goes into the operators. Since in the noncom-
mutative framework the standard concept of time breaks down, the dynamics

of the system is expressed in terms of derivations of the Einstein algebra.

Equation (5) acts on the Hilbert space L2(Gq). This space should be

regarded as a counterpart of the Hilbert space in the position representation
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of quantum mechanics. However, now the ª position spaceº is more abstract:

the quantity ) c ( g ) ) 2 is the probability density of the ª fundamental symmetryº

g P Gq to occur.
It might turn out that in order to make equation (5) manageable we

would have to impose on it some further conditions, for instance, to assume

that the triple (!, *, F ) is a Fredholm module or to assume some of its

summability properties (Connes, 1994, pp. 288±291; Masson, 1996, pp.

117±120).

To substantiate our approach we should show that it reproduces, in
the commutative limit, the usual general relativity and the usual quantum

mechanics. We shall demonstrate this in the next section.

5. TRANSITION TO GENERAL RELATIVITY AND
QUANTUM MECHANICS

The ª canonical wayº of obtaining a commutative geometry from a

noncommutative one is to restrict the corresponding noncommutative algebra

! to its center ](!). This can be done in the following way.
Let ](!)# be the set of all characters of ](!), i.e., the set of all

*-homomorph isms from ](!) to C. On the strength of the Gel’ fand theorem,

the algebra ](!)# is isomorphic with the algebra of continuous functions on

the groupoid G (with the usual multiplication). This algebra is given by the

Gel’ fand representation

r ](!): ](!) ® C](!)#

defined by

r ](!)(a)( x ) 5 x (a)

where a P ](!), x P ](!)#, and ](!)# can be identified with G [in general

G , ](!)#]. The algebra r ](!)(](!)) consists of continuous functions on

G, but since G is a smooth manifold, we can assume that these functions are

smooth (if necessary we can restrict this algebra to the subalgebra of smooth

functions) (Palais, 1981). We shall denote the algebra of these functions by
G ` . As is well known, there is a bijection

](!)# ® Spec](!)

where Spec](!) denotes the set of maximal ideals of ](!), given by

x j ker x

x P ](!)#. Each maximal ideal ker x determines a point of G (such a point

is given by the set of functions belonging to G ` vanishing at this point). We
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recall that points of G are ª fundamental symmetriesº of our theory. In this

way, the full geometry of the groupoid is given by the pair (G, G ` ).

Since the prototype of our groupoid was the Cartesian product G 5 E
3 G (see Introduction), where E was supposed to be the total space of the

frame bundle over spacetime M, we recover M by forming, first, the quotient

E 5 G/ G , and then M 5 E/ G [or M 5 (E/ G )/ G ; see below for the detailed

construction ]. The generalized Einstein equation (2) ª projected down,º in

this way, to spacetime M gives the usual Einstein equation of general relativity.

Let us assume that G is a compact group. In this case, there is a simpler
way of going to the classical case. Two fibers Gp and Gq , p, q P E, are said

to be equivalent if there is g P G such that q 5 pg. The set of all functions

belonging to the algebra ! which are constant on the equivalence classes of

fibers of the above equivalence relation form a subalgebra !proj of projectible
functions. It can be easily seen that !proj , ](!). Consequently, if f, g P
!proj, then the convolution f * g reduces to the usual multiplication, and !proj

is isomorphic with the algebra of smooth functions on the manifold M. In

this way, by restricting ! to !proj we obtain the standard spacetime geometry.

Now we discuss the transition from our noncommutative theory to the

usual quantum mechanics. To do this we must look more carefully at equation

(5). Let us assume that kerG Þ 0, and let us denote by %G the set of all
solutions of equation (5), i.e.,

%G 5 {a P %: i " p q(v(a)) 5 [ p q(a), F ], " v P kerG}

%G is clearly a C-linear space. We shall demonstrate that if a P %G, then
[ p q(a), F ] 5 0. Indeed, let us define the mapping

dÃa: kerG ® @(*)

by

(dÃa)(v) 5 p q(v(a))

It can be easily demonstrated that dÃa is C-linear. Therefore, for every v P
kerG one has

(dÃa)(v) 5
1

i "
[ p q(a), F ]

The right-hand side of this equation does not depend on v; therefore dÃa is

constant, and because of linearity dÃa(0) 5 0 implies dÃa 5 0. Hence, for

every a P %G

[ p q(a), F ] 5 0 (6)

as claimed.



Noncommutative Unification of GR and QM 1633

We see that in the quantum gravity regime, when quantum effects are

coupled to gravity (i.e., when v P kerG), our dynamical equation (5) assumes

the form (6), which basically says that p q(a) is a ª constant of motion.º This
seems reasonable since in the noncommutative era there is no time in the

usual sense. However, it is essential to assume, from the very beginning, the

validity of equation (5) rather than (6); this is necessary to obtain the correct

commutative case. Indeed, let us assume that the gravitational field is weak

so that quantum gravity effects can be neglected. This means that we omit

the assumption that v P kerG (i.e., general relativity decouples from quantum
mechanics). In such a case, for a given v P Der! the above proof of equality

(6) is no longer valid, and we come back to the original equation (5). For

simplicity, let us assume that G is compact. First, we shall show that a

derivation v P V, v Þ 0, satisfies equation (5) for all a P !proj if and only

if v P V G . Indeed, since !proj , ](!), [ p q(a), F ] 5 0 and this implies

i " p q(v(a)) 5 0. Hence, we have v(a) 5 0, and consequently v P V G .
Therefore, in this case, equation (5) acts only vertically. This means the

following. Let ( p1, g1), ( p2, g2) P G, p1, p2 P E, g1, g2 P G . We define the

equivalence relation ( p1, g1) , ( p2, g2) Û $ g P G p2 5 p1g. Then we consider

only those ª wave functionsº c Ä which have the following invariance property:

c Ä ( p1, g1) 5 c Ä ( p2, g2) ( c Ä is constant on equivalence classes of , ). ª Wave
functionsº with this property will be called G -invariant, and the set of all G -

invariant functions will be denoted by L2
G (G).

Now, let v P V G , and let - / - x i be a local basis on G 5 E 3 G , obtained

by lifting the local basis on G , and chosen so as to obtain v 5 - / - x i. If we

assume that F ) L2
G (G) 5 H, where H is the Hamiltonian operator, equation

(5) assumes the familiar form
Ù
- a

i " 5 [aÃ, H ]
- x i

of the SchroÈ dinger equation in the Heisenberg picture of quantum mechanics

(the caret denotes here the image under the p q representation of the algebra
!). This, of course, had to be expected. In the noncommutative quantum

regime there are no concepts of points and time instants [space and time are

somehow hidden in the subalgebra of ](!)], and the usual concept of space-

time appears only in the transition process to standard physics. No wonder

that we obtain the Heisenberg picture in which state vectors are time indepen-
dent and all time dependance goes into the operators.

6. A SIMPLE EXAMPLE

In this section we analyze a simple model of our scheme. The basis of

this model is the groupoid G 5 E 3 D4, where E is the total space of the
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frame bundle over the three-dimensional Minkowski spacetime M 3 and D4

is a group consisting of four rotations by the angle p /2 and four reflections

with respect to two directions crossing each other at the origin. If r denotes
rotation and s reflection, the following relations are assumed to be satisfied:

r 4 5 1, s2 5 1, srs 5 r 2 1

D4 is a finite noncommutative subgroup of the group SU(2). D4 acts on E
(to the right) on the plane (x, y) leaving the t axis fixed.

For every vector field X P -(M 3) on the Minkowski spacetime M 3,

there exists its lifting to XÅ P -(G) such that the vector field XÅ is constant
on the fibers (of G) parallel to M 3. All such fields form a ](!)-submodule

VE of the ](!)-module Der(!), where ! 5 C ` (G). Analogously, we have

a ](!)-submodule VD4 of the ](!)-module Der(!). Our simple model is

based on the differential algebra (!, V ), where V 5 VE % VD4, V , Der(!).

Accordingly, the algebra C ` (G) can be ª decomposedº into the algebras C ` (E )

and C[D4], where C ` (E ) 5 i *E (C ` (G)) and C[D4] 5 i *D4 (C ` (G)), i E and
i D4 being natural embeddings of E and D4 into G, respectively.

In agreement with formula (1), we assume the metric on the ](!)-

module V of the form

g 5 pr*E + p *1 h 1 pr*D4gD4

where h and gD4 are the Minkowski metric on M 3 and a metric on the group

D4, respectively; prE and prD4 are the obvious projections from the groupoid,

and p 1 is the canonical projection from E to M 3.

Since the ª parallel geometryº (geometry based on VE) is rather obvious
(see below), we shall focus on the ª vertical geometryº (geometry of D4). As is

well known, the group algebra C[D4] can be constructed in the following way:

C[D4] 5 H o
8

i 5 1

ci Ai: ci P C, Ai P D4, i 5 1, . . . , 8 J
(8 is the rank of D4), with the usual addition and convolution as multiplication.

For any finite group G there exists an isomorphism

T: C[ G ] ® &
k

i 5 1
Mni(C )

where Mni(C ) are ni 3 ni matrices and i runs over all irreducible representa-

tions of G , such that T( w * c ) 5 T( w ) ? T( c ), with the asterisk denoting

convolution and the dot the usual matrix multiplication. The group D4 has

four irreducible representations of rank 1, and one irreducible representation
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of rank 2 (Serre, 1978). Therefore, in our case, the above isomorphism

assumes the form

T: C[D4] ® C % C % C % C % M2(C )

given by

T 5 ( l 1, l 2, l 3, l 4, r 1)

where l 1, l 2, l 3, l 4 are the rank 1 irreducible representations of D4, and r 1

is the rank 2 irreducible representation of D4.
The set of derivations Der(C[D4]) of the algebra C[D4] is isomorphic

with Der(M2(C )). It can be shown by straightforward computation that if

(e a ), a 5 1, . . . , n2 2 1, is a basis of the Lie algebra su(n) of the Lie group

SU(n), and if c g
a b , a , b , g 5 1, . . . , n2 2 1, are structure constants of su(n)

with respect to the basis (e a ), then c g
a b are also structure constants of the Lie

algebra Der(Mn(C ) with respect to the basis (ade a ), a 5 1, . . . , n2 2 1. In
our case, we choose the following basis for su(2):

e1 5 ad
i

2
s 1, e2 5 ad

i

2
s 2, e3 5 ad

i

2
s 3

where s 1, s 2, s 3 are the usual Pauli matrices, and the structure constants

assume the simple form c g
a b 5 e a b g , i.e., they are equal to 1 for even permuta-

tions, and 0 otherwise (e.g., Choquet-Bruchat et al., 1982).

Now we choose the metric gD4: VD4 3 VD4 ® ](C[D4]). Since the
metric pr*D4gD4 is essentially unique, we choose the metric gD4 in the simplest

possible form,

(gD4)ij 5 d ijI

and develop differential geometry as in Section 3.
Straightforward computations give the following nonvanishing compo-

nents of the Ricci operator:

R1
1 5 R2

2 5 R3
3 5

1

2

It can be easily seen that in this case the Einstein equation RD4(w) 5 0

is satisfied only for w 5 0, w P VD4. To have nontrivial solutions we should

try the Einstein equation with the cosmological constant. For w 5 wivi , it

can be written in the form

(RD4 1 2 L id)wivi 5 0

This is the eigenvalue equation for the operator RD4 with the eigenvalues

l 5 2 L . One can easily find that L 5 1/4, and corresponding ly one has
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ker(GD4) 5 {tv1: t P C }

It is a remarkable fact that our simple model requires for its consistency the
existence of the cosmological constant in the quantum sector of the model

(i.e., in its ª vertical geometryº ), and predicts its value. Of course, because

of the ª toyº character of the model, this value is rather symbolic.

Now we must return to the ª parallel geometry.º We shall consider the

algebra !E 5 p *2 (C ` (E )), where p 2 is the natural projection from G 5 E 3
D4 to E. Since in our case the frame bundle p 1: E ® M 3 is a trivial bundle,
there is a natural embedding i k : M ® E, k P G , where G is the structural

group of this bundle, i.e., the Lorentz group. There is also another natural

embedding jh: E ® G, h P D4. With the help of these two embeddings we

ª push forwardº the basis ( - t , - x , - y) in M 3 to the basis ( - Å t , - Å x , - Å y) in G. In

this way, we obtain the ](!)-module of derivations

VE 5 { a 1 - Å t 1 a 2 - Å x 1 a 3 - Å z: a 1, a 2, a 3 P !E}

We equip this module with the metric h Å lifted from the Minkowski metric

h on M 3, i.e., h Å 5 t * h , where t 5 p 1 + p 2. It can be easily seen that in fact

h Å is also the Minkowski metric (it can be weakly degenerate; see Section

2.2). Indeed, let XÅ , YÅ P VE; then h Å (XÅ , YÅ ) 5 ( t * h )(XÅ , YÅ ) 5 h ( t
*

XÅ , t
*
YÅ ) 5

h (X, Y ).
Therefore, our model is described by the algebra ! 5 C ` (E 3 D4)

together with the ](!)-module of derivations of !

V 5 VE % VD4 5 { a a - Å a 1 b i y Å i : a a, b i P !, a 5 0, 1, 2; i 5 1, 2, 3}

Now we should see how the generalized Einstein equation interacts with

the quantum dynamical equation (5). Since we postulate that the derivation

v in the left-hand side of equation (5) should be a solution of the generalized

Einstein equation, equation (5) assumes the form

i " p q 1 1 a a - Å a 1 tad
i

2
s 1 2 (a) 2 5 [ p q(a), F ]

and, for a P !G, [ p q(a), F ] 5 0 (see Section 5).

In agreement with the discussion of Section 5, in order to obtain the

classical case we must restrict the algebra ! 5 C ` (G) to the algebra !proj,

and the proof that [ p q(a), F ] 5 0 for all a P !G is no longer valid. In such

a case, the ª vertical geometryº projects to zero, and we are left with the
ordinary Minkowski spacetime M 3 and the corresponding Einstein field equa-

tion R 5 0 (this effect, in the considered model, is trivial since the ª parallel

geometryº has been obtained by lifting the Minkowski geometry to the

groupoid G). Let us notice that, even in this toy model, we have an interesting
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result: in the noncommutative regime a kind of cosmological constant appears

(as an eigenvalue of the Ricci operator for the ª quantum sectorº ) which

vanishes if we go to the classical case.

7. OBSERVABLES AND THEIR EIGENVALUES

In postulate 1 of our quantization scheme we identified quantum gravity

observables with the Hermitian elements of the algebra ! by following strict

analogy with the C*-algebraic quantization in the usual quantum mechanics.

However, from the experimental point of view we are interested only in those

observables which leave some traces in the macroscopic world and thus have

a chance to be detected. As seen in the preceding section, such observables
must belong to !proj. Let a be such an observable, and let the system be in

a state c which, in order ª to be reachedº by a macroscopic observer, must

be G -invariant (see Section 5). Measuring an observable quantity correspond-

ing to a when the system is in a G -invariant state c P L2(Gq) means acting

with a upon c . The measurement will give as its result the eigenvalue rq as

determined by the eigenvalue equation

p q(a) c 5 rq c (7)

where, for simplicity, we consider a nondegenerate case. Taking into account

the form of the representation p q [equation (4)], the above equation is equiva-
lent to

# Gq

a( g 1) c ( g 2 1
1 g ) 5 rq c ( g )

From the G invariance of c it follows that c is constant on Gq; therefore,

we can write

c ( g 2 1
1 g ) # Gq

a( g 1) 5 rq c ( g )

and consequently

rq 5 # Gq

a( g 1)

Therefore we have proved the following fact: If c P L2(Gq) is G -invariant
and if it is an eigenfunction of a P %H , the eigenvalue of a is rq 5
* Gq a( g 1). This is a nice conclusion. Let us notice that the result rq of a

measurement is a measure in the mathematical sense (in this case we deal

with the Haar measure on the group G ). But we can go even further. Let us

define the ª total phase spaceº of our system
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L2(G) : 5 %
q P G(0)

L2(Gq)

with the operator p (a) : 5 ( p q(a))q P G
(0) acting on it. Now, the eigenvalue

equation (7) can be naturally written as p (a) c 5 r c , where r is a function

on G; since, however, c is G -invariant, r can be interpreted as the function

on spacetime M

r: M ® R

defined by r(x) 5 rq 5 * Gq a( g 1) with x being a point in M to which the

ª frameº q is attached. The measurement result is not a ª naked number,º but
a value of a function r(x) at a given point x P M the domain of which is

the entire spacetime M. As the consequence of this, if the measurement is

performed at a point x P M, its result r(x) is correlated with the result r( y)

of another measurement of the same kind, performed at another point y P
M, on another component of the same system even if points x and y are far

from each other. This also suggests that typically quantum gravitational
phenomena should be looked for among correlations between distant measure-

ments rather than among ª local phenomena.º This could be regarded as a

relic of the pre-Planckian era in which ª everything was global.º

So far we have been interested in what happens when we project the

algebra ! onto the ª horizontal componentº E of the groupoid G. This gives

us the transition to the classical spacetime geometry (general relativity). Now
we shall study the projection of ! onto the ª vertical componentº G of G.

This will give us quantum effects of our model. In analogy with !proj, let

us define the subalgebra ! G of functions projectible to G

! G : 5 { f + pr G : f P C `
c ( G , C )} , !

Let a P ! G , and let us consider the following representations of ! G

[see equation (4)]:

p p(a)( j p) 5 ap * j p (8)

and

p q(a)( j q) 5 aq * j q (9)

where j p P L2(Gp), j q P L2(Gq), p, q P E, p Þ q. Since Gp and Gq are

isomorphic, we can choose j p and j q to be isomorphic with each other. This

in turn implies that p p(a) and p q(a) are isomorphic as well. In this way we

have obtained the following important result: If a P ! G , then its image
under the representation p p does not depend on the choice of p P E (up to
isomorphism) . In simple terms: all points of M ª knowº what happens in any

fiber Gg , g P G . This opens the way to explaining nonlocal phenomena,

such as the Einstein±Podolsky±Rosen experiment, in quantum mechanics.
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8. EINSTEIN ± PODOLSKY± ROSEN EXPERIMENT FROM
NONCOMMUTATIVE GEOMETRY

In this section we shall show that nonlocal effects met in quantum

mechanics can be regarded as ª shadowsº from the ª totally nonlocalº physics

of the Planck regime [for details see Heller and Sasin (1998)]. Let us assume

that G 0 5 SU(2) is a subgroup of G . We look for an element s P ! G such
that p p(s): L2( G 0) ® L2( G 0). We define two linearly independent functions

on G 0, the constant functions 1: G 0 ® C and det: G 0 ® C, which span the

linear space C2 , L2( G 0), i.e., C2 5 ^ 1, det & C. Let SÃ
z 5 p p(s) ) C2 be the z

component of the usual spin operator. We have

p p(s) c 5 SÃ
z c

for c P C2 or, by using representation (4) and taking into account that SÃz c 5
6 (É/2) c , we obtain

# G 0

sp( g 1) c ( g 2 1
1 g ) 5 6

"
2

c

and since sp 5 const,

# G 0

c ( g 2 1
1 g ) , c ( g )

One of the solutions of this equation is c 5 1 G 0. Hence,

"
2

5 6 # G 0

sp( g 1)

which gives

(sp)1 5 1
"
2

1

vol G 0

(sp)2 5 2
"
2

1

vol G 0

Therefore, the corresponding eigenvalue equations are

p p((sp)1) c 5 1
"
2

c for c P C+

p p((sp)2) c 5 2
"
2

c for c P C 2

where C+ : 5 C 3 {0} and C 2 : 5 {0} 3 C.
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Now, the ª EPR paradoxº can be discussed in the standard way. Let A
be an observer situated at p M ( p) 5 xA P M who measures the z-spin compo-

nent of the one of the electrons, i.e., he applies the operator SÃz ^ 1 ) C2 to the
vector j 5 (1/ ! 2)( c ^ w 2 w ^ c ), where c P C+ and w P C 2 . Let us

assume that as a result he obtains the value ( " /2). Therefore, as the effect of

the measurement, the state vector

j 5
1

! 2
( c ^ w 2 w ^ c ) P C2 ^ C2 , L2(Gr) ^ L2(Gr), r P E

collapses to j 0 5 (1/ ! 2)( c ^ w ). Therefore, immediately after the measure-

ment the system is in the state j 0, but this is the same (up to isomorphism)

for all fibers Gr , r P E. Let us notice that formulas (8) and (9) are obviously

valid also for tensor products, and consequently the state j 0 does not depend

on the point in spacetime to which the frame r is attached. In particular, the

vector j 0 is the same for the fibers Gp and Gq , where p is such that p M ( p) 5
xA and q is such that p M (q) 5 xB (xA Þ xB). Now, if observer B situated at

xB measures the z-spin component of the second electron, i.e., if he applies

the operator 1 ) C2 ^ SÃz to the vector j 0, he must obtain the value 2 " /2 as the

result of his measurement.

Since the main tool in deducing nonlocal phenomena, and in particular
the EPR effect, from our model is projecting from G to either E or G , we

can truly say that nonlocal phenomena, actually known in quantum mechanics,

are shadows of the noncommutative regime reigning at the fundamental level.

9. CONCLUDING REMARKS

In the present paper we have proposed a mathematical structure which

combines essential aspects of general relativity (its main geometric elements)

with those of quantum physics (algebra of operators on a Hilbert space), and

leads to correct ª special casesº of standard general relativity and standard

quantum mechanics. This result is rooted in the fact that we have performed

the quantization of a groupoid (over a spacetime) rather than of spacetime
itself.

Although our approach is a scheme rather than a full theory [since two

of its important elements, the group G and the operator F in equation (5),

remain unspecified], it gives some hints of what the future theory, based on a

noncommutative theory, could be like. It also clearly suggests that measurable

effects of quantum gravity should be looked for among correlations of distant
phenomena rather than among local effects (Section 7). The calculation of

the Einstein±Podolsky ±Rosen effect (Section 8) not only strongly confirms

this suggestion, but also could be regarded as a ª retrodictionº confirming (at

least some aspects of) our model. It is also a remarkable fact that a simple
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model based on the groupoid G 5 E 3 D4 (Section 6) predicts the value of the

ª cosmological constantº which, after projecting down to spacetime, vanishes.

To choose the correct group G it is important to experiment with various
possibilities. In Heller et al. (1997) we computed an example where G is any

finite group. The next should be the generalization to the case when G is

compact. However, from the physical point of view the most interesting are

cases with G noncompact; in these cases, instead of the algebra ! 5
C `

c (G,C ) one could consider the algebra !0 5 C `
o (G,C ) of smooth functions

vanishing at infinity [! is the norm closure of !0; see Landi (1997), p. 168].

In such cases, one would have to deal with families of noncommutative

algebras rather than with a single algebra. For instance, as the work by Fell
(1961) demonstrates, the group algebra of SL(2,C ) (which physically is very

interesting) can be expressed in terms of algebras of operator fields on a

locally compact Hausdorff space, which in turn is isomorphic with the algebra

of norm-continuous functions on a certain parameter space.
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